The Soda Pop

Bài 3: Đạo hàm của hàm số lượng giác (Giải bài tập 7,8)

Bài 7. (Hướng dẫn giải trang 169 sgk Giải tích 11 cơ bản)


Giải phương trình f'(x) = 0, biết rằng:









a) f(x) = 3cosx + 4sinx + 5x;


b) f(x) = 1 – sin(π + x) + 2cos(2π+x)/2


Hướng dẫn giải:


a) f'(x) = – 3sinx + 4cosx + 5. Do đó


f'(x) = 0 <=> – 3sinx + 4cosx + 5 = 0 <=> 3sinx – 4cosx = 5


<=> 3/5sinx – 4/5cosx = 1.    (1)


Đặt cos φ = 3/5, (φ ∈ (0;π/2) => sin φ = 4/5

Ta có:


(1) <=> sinx.cos φ – cosx.sin φ = 1 <=> sin(x – φ) = 1



, , ,

Cho chúng tôi biết ý kiến của bạn?
Không kẻ bi quan nào có thể phát hiện ra bí ẩn của những vì sao, hay căng buồm tới miền đất mới, hay mở cánh cửa vào linh hồn của con người.
No pessimist ever discovered the secret of the stars, or sailed to an uncharted land, or opened a new doorway for the human spirit.
Helen Keller
Quan Tâm ?
Ngẫu Nhiên