Sự đồng biến và nghịch biến của hàm số ( giải bài tập 1,2,3,4)

Tiếp tục với mục hướng dẫn giải cho chủ đề sự đồng biến, nghịch biến, dehoctot.vn đưa đến cho các bạn học sinh các đáp án và hướng dẫn giải tham khảo cho phần II luyện tập nhé.


Hướng dẫn giải luyện tập sự đồng biến, nghịch biến của hàm số phần II


Bài 1. (Đọc đề chi tiết tại đây nhé)









TXĐ: D = R


f'(x) = -x + 2x + k – 2;


Δ = k – 1.




    • Nếu Δ’ = 0 <=> k=1 thì f'(x) = -(x-1)2  ≤ ∀ x ∈ R, f'(x) = 0 <=> x=1. Vậy hàm số nghịch biến trên R.

    • Nếu Δ’ > 0 <=> k > 1 thì f'(x) có hai nghiệm phân biệt x1,  x2 (x1  < x2). 


  • Ta có bảng biến thiên:


Sự đồng biến và nghịch biến của hàm số ( giải bài tập 1,2,3,4)


Hàm số đồng biến trên khoảng (x1; x2. Trường hợp này bị loại.



  • Nếu Δ’ < 0 <=> k < 1 thì f'(x) < 0  ∀ x ∈ R. Hàm số nghịch biến trên R. 


Vậy: Với k ≤ 1 thì hàm số nghịch biến trên R.


Bài 2. (Đọc đề chi tiết tại đây nhé)


Xét hàm số y = f(x) = sin x + tan x – 2x, x ∈ [0;π/2)



, , , , , , , , , , , ,

Cho chúng tôi biết ý kiến của bạn?
Cũng giống như con người sẽ không vui sướng sống trong cơ thể của người khác, một quốc gia cũng vậy, không muốn sống dưới bóng quốc gia dù có cao quý và vĩ đại đến bao nhiêu.
Just as a man would not cherish living in a body other than his own, so do nations not like to live under other nations, however noble and great the latter may be.
Mahatma Gandhi
Quan Tâm ?
Ngẫu Nhiên

XtGem Forum catalog